If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8+10x-3x^2=0
a = -3; b = 10; c = +8;
Δ = b2-4ac
Δ = 102-4·(-3)·8
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*-3}=\frac{-24}{-6} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*-3}=\frac{4}{-6} =-2/3 $
| (-x)/2=-6+(-8) | | (X^2-4)=3x | | 5x-10+65+2x+x+45=180 | | 5(2f+1)=7f+26 | | 3x+4x+75=180 | | 14x+10=150 | | 3x+2x+65=180 | | 2x-4/4=5 | | 3x-(-9)=34 | | 12x+30=75 | | 3x+8=2-8 | | 5p+10=8p+1. | | 3(p-8)=2p | | 2(a+1)+5=19 | | 86=2(n-46) | | X2-14x+16=0 | | 2x+8=15+9 | | m+3/6=m/8 | | n-2/8=n/5 | | 0=4x^+16x+12 | | |3x-6|+7=-7 | | -4n-3+2n=-11 | | 3(1-6y)-10y=17 | | X2+8x=180 | | 7(2b+5)=21 | | F(x)=x2+3x-21 | | p-13.32=3/5 | | n-3n-1=-1 | | T2+4t-165=0 | | W2-14w+13=0 | | 3n-4-n=-12 | | 7u=5-3u= |